If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18+3x-2x^2=0
a = -2; b = 3; c = +18;
Δ = b2-4ac
Δ = 32-4·(-2)·18
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{17}}{2*-2}=\frac{-3-3\sqrt{17}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{17}}{2*-2}=\frac{-3+3\sqrt{17}}{-4} $
| 125+119+117+135+140+x=900 | | 16n=21 | | 18w+3(3-w)=54 | | 3+9x=15x+9 | | 42=-10+2m | | 8x+17=13+2 | | 5x-35=18 | | 6x-7=3x-16 | | x2-8x+19=7 | | -2u+-15=3 | | 3(x+4=-18 | | A=10+w | | 3p−-6=9 | | -64x^-2=0 | | 3.4=-t/7.5 | | -5x2=-1125 | | 5x+16=8x-20,x | | 2x+10x=-15 | | -5m2=-125 | | -5m2=-1125 | | X5X=20x1 | | 10/9=-5x | | 4w-10=2 | | -3(w-7)=-8w+31 | | -3v+45=-6(v-3) | | 2-6x=11+3 | | -9x-9=9x-99 | | -5(x+8)=-3x-28 | | 2v-22=6(v-3) | | 4(6+7y=) | | 4x+12+5x=180 | | k=6+5-8/2 |